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a b s t r a c t

This paper develops a maintenance strategy for repairable products that combines imperfect mainte-
nance actions at pre-scheduled times and minimal repair actions for failures. Under a power law process
of failures, an expected total cost is developed that involves the sum of the total cost of imperfect preven-
tive maintenances and the expected total cost of minimal repairs. Moreover, a searching procedure is pro-
vided to determine the optimal maintenance schedule within a finite time span of warranty. When the
parameters of the power law process are unknown, the accuracy of the estimated maintenance schedule
is evaluated based on data through an asymptotic upper bound for the difference of the true expected
total cost and its estimate. The proposed method is applied to an example regarding the maintenance
of power transformers and the performance of the proposed method is investigated through a numerical
study. Numerical results show that the proposed maintenance strategy could save cost whether an
imperfect maintenance action or the perfect maintenance action is implemented.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Most products or systems are designed to be repaired rather
than replaced after failure in the real world. Maintenance policies
are fundamental under these conditions because a properly pre-
ventive maintenance (PM) strategy can save money and keep prod-
ucts running longer. A PM policy specifies the periodicity to
maintain a product through the product whole lifetime. Pham
and Wang (1996) mentioned that a maintenance action could be
classified into perfect maintenance, minimal repair (MR) or imper-
fect maintenance. A perfect maintenance restores a product to be
as good as new, an MR restores a product to have the same failure
rate condition as it had just right before failure and an imperfect
maintenance makes a product better than what it had before fail-
ure but not necessarily to be as good as new. Since the pioneer
work of Barlow and Hunter (1960), the combination of a perfect
PM and an MR has been of interest by many authors, for examples,
Gerstack (1977), Block, Borges, and Savits (1990), Park, Jung, and
Yum (2000), Lai, Leung, Tao, and Wang (2001) and Gilardoni and
Colosimo (2007).

In an optimal maintenance policy setting, the nonhomogeneous
Poisson process (NHPP) has played a key role in modeling the ran-
dom occurrences of failures. Let N(0, t) denote the number of fail-
ll rights reserved.
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ures in the interval (0, t]. A process {N(0, t):t P 0}, which has
independent increments and N(0,0) = 0, is a Poisson process with
intensity k(t), if the random variable N(0, t) has a Poisson distribu-
tion and mean MðtÞ ¼ EðNð0; tÞÞ ¼

R t
0 kðuÞdu for t P 0. When the

intensity function k(t) is not constant and depends on the time t,
the Poisson process is called the NHPP. The most popular NHPP
is the power law process (PLP) which has a Weibull intensity
function,

kðtÞ ¼ btb�1=hb; ð1:1Þ

where h > 0 is the scale parameter and b > 0 is the shape parameter.
The PLP had been successfully applied to model the occurrences

of failures in a number of PM studies. Some good discussions
regarding the applications of NHPP have been published by Crow
(1974), Cox and Miller (1965), Ascher and Feingold (1984), Bain
and Engelhardt (1991), Rigdon and Basu (2000) and Pulcini
(2001). The model (1.1) is quite flexible in reliability studies be-
cause it includes the growth model when 0 < b < 1, the decay mod-
el when b > 1 and the homogeneous Poisson process when b = 1.

Assuming infinite operation time for a repairable product, Gilar-
doni and Colosimo (2007) proposed an optimal perfect PM sche-
dule which minimized the expected average total cost per unit
time. Moreover, they provided a large sample estimation proce-
dure for the determination of their PM schedule when the param-
eters of the PLP are unknown. However, the maintenance actions in
practical situations could be imperfect and the operation time for a
repairable product could be finite. This article relaxes the
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conditions of Gilardoni and Colosimo (2007) to develop a new PM
plan in which repairable products undergo imperfect maintenance
actions within a finite time span of warranty. The objective of the
proposed PM policy is to minimize the expected total cost in a fi-
nite time span of warranty instead.

In Section 2, the proposed PM policy and a searching procedure
to setup the optimal PM schedule are developed for repairable
products when the time span of warranty is finite. In Section 3,
an asymptotic upper bound for the difference of the true expected
total cost and its estimate is provided to evaluate the accuracy of
the estimated PM schedule based on data. The proposed method
is illustrated via an example in Section 4. Moreover, the perfor-
mance of the proposed PM policy is compared with the one pro-
posed by Gilardoni and Colosimo (2007) in terms of the expected
average total cost per unit time. In Section 5, a numerical study
is conducted to evaluate the performance of the proposed PM pol-
icy for various combinations of parameters. Finally, concluding re-
marks are given in Section 6.

2. The proposed preventive maintenance model

Assume that a repairable product starts to operate at time zero
and undergoes m times of imperfect maintenance actions within a
finite time span of warranty, W. The imperfect maintenance action
satisfies the following conditions:

1. PM check points are scheduled after every s units of time such
that 0 6ms 6W.

2. Each PM can return the product’s age xi = x = rs, where
i = 1,2, . . . ,m and 0 6 r 6 1. If r = 0, then the maintenance action
has no effect to the product; while r = 1, it represents a perfect
maintenance action which instantly returns the product to a
new condition.

3. The PM cost at the time t can be modeled as a linear function of
the product’s age t and the returned product’s age x,
Cp(t,x) = a + c1x + c2t, where a, c1 and c2 are nonnegative coeffi-
cients (see Yeh & Chen (2005)).

4. When a failure occurs between two PM check points, a MR is
applied. The cost for a MR is denoted by cMR.

It should be noticed that if no PM action is implemented in the
operating time interval (0,W], then the expected total cost is given
as

c0 ¼ cMR � E½Nð0;WÞ�: ð2:1Þ

Otherwise, let the time interval ((0,W] = (0,s] [ (s,2s][� � �[
((m � 1)s,ms] [ (ms,W] and yi denote the ith cumulative return
time at the ith PM action, where i = 0,1,2, . . . ,m, y0 = 0 and
yi ¼

Pi
k¼1xi ¼ irs for i = 1,2, . . . ,m. Therefore, the expected MR cost

in the ith interval ((i � 1)s, is] is the cMR multiple of the expected
number of failures that occur within the interval. Moreover, the ex-
pected cost in the ith interval ((i � 1)s, is] is the sum of the expected
MR cost in the interval and the PM cost happened at the end of the
interval. Therefore, the expected cost in the ith interval can be
mathematically represented as,

cMR � E½Nðði� 1Þs� yi�1; is� yi�1Þ� þ Cpðis; xÞ: ð2:2Þ

The expected total cost for the entire time interval, (0,W] can be
determined as follows:

Cðs;mÞ ¼
Xm

i¼1

fcMR � E½Nðði� 1Þs� yi�1; is� yi�1Þ�

þ Cpðis; xÞg þ cMR � E½Nðms� ym;W � ymÞ�; ð2:3Þ

where E½Nðh1;h2Þ� ¼
R h2

h1
kðuÞdu; h1 < h2. When a perfect PM is

applied and c1 = c2 = 0, C(s,m) is reduced to Eq. (1) of Gilardoni &
Colosimo (2007) with T = W. However, when T = W is finite, the
term R = cMR � E[N(ms � ym,W � ym)] may not be negligible and the
average expected total cost per unit of time Cðs;mÞ

W is, hence, different
from the Eq. (2) of Gilardoni & Colosimo (2007) under a perfect PM
with c1 = c2 = 0. The derivative of C(s,m) with respect to s is

dCðs;mÞ
ds

¼
Xm

i¼1

fcMR � ½aikðaisÞ � bikðbisÞ� þ ðc1r þ c2iÞg � cMR

� ½mrkðW �mrsÞ þmð1� rÞkðmð1� rÞsÞ�; ð2:4Þ

where ai = i � ir + r and bi = (i � 1)(1 � r). Under the PLP of the Wei-
bull intensity function, Eq. (2.4) can be rewritten as,

dCðs;mÞ
ds

¼
Xm

i¼1

cMRbsb�1

hb ab
i � bb

i

� �
þ c1r þ c2i

� �
� cMR

hb bmrðW �mrsÞb�1 þ ðmð1� rÞÞbbsb�1
h i

ð2:5Þ

and the second derivative of C(s,m) with respect to s is

d2Cðs;mÞ
ds2 ¼ cMRbðb� 1Þ

hb

� �
sb�2

Xm

i¼1

ab
i � bb

i

� �
� ðmð1� rÞÞb

" #(

þðmrÞ2ðW �mrsÞb�2

)
: ð2:6Þ

It can be shown that
Pm

i¼1 ab
i � bb

i

� �
� ðmð1� rÞÞb > 0 for b > 0.

Therefore, when b > 1, d2Cðs;mÞ
ds2 > 0 and C(s,m) is a convex function

of s over 0 < s 6W for a given m. Because the repairable product
is assumed to decay in reliability, only the case of b > 1 is consid-
ered. Hence, the optimal s�m, which minimizes the expected total
cost in the time interval (0,W] can be determined by solving
dC(s,m)/ds = 0 over 0 < s < W or s�m ¼W . For each m, the optimal
s�m can be solved numerically. The optimal PM number m⁄ can be
obtained by

m� ¼ arg min
fm¼1;2;...g

C s�m;m
� 	
 �

:

In practical applications, it is common for the MR cost to greatly ex-
ceed the PM cost. In addition, the expected number of failures is
increasing with respect to the length of operating time interval be-
tween two PMs when the PLP shape parameter b > 1 and each PM
can improve the system state. Therefore, when the number of
PMs starts to increase from zero, it is expected to decrease the ex-
pected total cost, intuitively. However, when the number of PMs in-
creases to a certain level, the expected total cost would start to
increase. Based on this principle, a search algorithm shown in
Fig. 1 is proposed to find the optimal PM time schedule.

3. Statistical methods

In practical applications, parameters in the NHPP may not be
known in advance. It is necessary to estimate s based on data.
Assuming that a product could be operated for infinite time, Gilar-
doni & Colosimo (2007) discussed a procedure for the large sample
maximum likelihood estimation of their optimal maintenance
schedule based on the failure times observed from one or more
identical products under their proposed perfect PM policy. The ba-
sic ways for collecting data from a repairable product could be the
failure truncated or the time-truncated sampling. The failure trun-
cated sampling means that the data collection is ceased after a
specified number, k, of failures. The time truncated sampling
means that the data collection is ceased at a predetermined time T.

Let 0 < t1 < t2<� � �<tk < T denote the times to failures observed
until a predetermined time T for a NHPP with intensity function
k(t) = k(tjl), where l is a vector of the unknown parameters.



Fig. 1. Flow chart of the searching process.
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Following Rigdon & Basu (2000), the likelihood function for l is gi-
ven by

LðlÞ ¼ exp �
Z T

0
kðuÞdu

� �Yk

j¼1

kðtjÞ: ð3:1Þ

For the failure truncated sampling, tk will be used to replace T in Eq.
(3.1), where tk is the kth failure time. If n independent products are
observed, involving n1 time-truncated products at time Ti for
i = 1, . . . ,n1, respectively and n � n1 failure truncated products at
the kth

i failure for i = n1 + 1, . . . ,n, respectively, then the likelihood
function can be presented as

LðlÞ ¼ exp �
Xn1

i¼1

Z Ti

0
kðuÞdu�

Xn

i¼n1þ1

Z tiki

0
kðuÞdu

 !Y
i;j

kðtijÞ;

ð3:2Þ

where tij is the jth failure time for the ith product. Therefore, the
maximum likelihood estimator (MLE) of l can be determined by

l̂ ¼ arg max
l2X
fln LðlÞg;

where X is the parameter space. Using the PLP with the k(t) of Eq.
(1.1) and letting l = (h,b) in Eq. (3.2), the likelihood function can
be rewritten as
Lðh;bÞ ¼ exp �
Xn1

i¼1

Z Ti

0

bub�1

hb du�
Xn

i¼n1þ1

Z tiki

0

bub�1

hb du

( )Y
i;j

btb�1
ij

hb

¼ exp �
Xn1

i¼1

Ti

h

� �b

�
Xn

i¼n1þ1

tiki

h

� �b
( )Y

i;j

btb�1
ij

hb :

It follows that

@ ln Lðh;bÞ
@h

¼ b
Xn1

i¼1

Tb
i

hbþ1 þ
Xn

i¼n1þ1

tb
iki

hbþ1 �
X

i;j

1
h

( )
; ð3:3Þ

@ ln Lðh;bÞ
@b

¼ �
Xn1

i¼1

Ti

h

� �b

ln
Ti

h

� �
�
Xn

i¼n1þ1

tiki

h

� �b

ln
tiki

h

� �

þ
X

i;j

1
b
þ ln tij � ln h

� �
: ð3:4Þ

The MLEs, ĥ and b̂, can be determined numerically by equating Eqs.
(3.3) and (3.4) to zero and solving h and b simultaneously.

Let l̂ ¼ ðĥ; b̂Þ, it can been shown that l̂! MVNðl;RÞ as the
number of failures grows to infinity, where MVN(l,R) denotes a
multivariate normal distribution with mean vector l and vari-
ance–covariance matrix R. The variance-covariance matrix R can
be estimated by bR which is obtained by evaluating the negative in-
verse of the Hessian matrix of ln L(l) at l̂. According to Eq. (2.5), s�m
can be given by a function of l, say s�m ¼ gðlÞ. So the MLE of s�m will
be ŝ�m ¼ gðl̂Þ by the invariance property. Moreover, it follows that

ŝ�m ! N s�m;r
2
ŝ�m

� �
;

as the number of failures is large, where r2
ŝ�m
¼ ½rgðl̂Þ�TR½rgðl̂Þ�

and rg is the gradient of g. The approximate 100(1 � a)% confi-
dence interval for s�m can be obtained by ŝ�m � za=2r̂ŝ�m , where za/2

is the quantile of standard normal distribution with a/2 upper-tail
probability and r̂2

ŝ�m
is ½rgðl̂Þ�T bR½rgðl̂Þ�.

Assuming that k(t) is of Eq. (1.1), the gradient, rgðh; bÞ ¼
@s�m=@h; @s�m=@b
� 	T, of s�m ¼ gðh; bÞ can be obtained as follows: Let
F h; b; s�m
� 	

¼ dCðs;mÞ=ds ¼ 0,

F1 h;b; s�m
� 	

¼ @

@h
F h; b; s�m
� 	

;

F2 h;b; s�m
� 	

¼ @

@b
F h;b; s�m
� 	

;

F3 h;b; s�m
� 	

¼ @

@s�m
F h;b; s�m
� 	

:

From Eq. (2.5), we get

@F h;b; s�m
� 	
@h

¼ � cMRb
2

hbþ1

Xm

i¼1

s�m
� 	b�1ji �mr/b�1

1 � /b
2

s�m

" #
; ð3:5Þ

@F h;b; s�m
� 	
@b

¼ cMR

hb s�m
� 	b�1 Xm

i¼1

ji þ b ab
i ln

s�mai

h

� �� �� �((

�
Xm

i¼2

bbb
i ln

s�mbi

h

� �)
�mr/b�1

1 1þ b ln
/1

h

� �� �

�/b
2

s�m
1þ b ln

/2

h

� �� �)
; ð3:6Þ

@F h;b; s�m
� 	
@s�m

¼ cMRbðb� 1Þ
hb

Xm

i¼1

s�m
� 	b�2ji þ ðmrÞ2/b�2

1 � /b
2

s�m
� 	2

" #
;

ð3:7Þ

where /1 ¼W �mrs�m; /2 ¼ mð1� rÞs�m and ji ¼ ab
i � bb

i . There-
fore, it can be shown that



Table 1
Power transformers data.

Unit Failures and PMs times (h)
Censoring times are enclosed between parentheses

1 8839 17,057 (21,887)
2 9280 16,442 (21,887)
3 10,445 (13,533)a (21,435)
4 (8414)a (21,745)
5 17,156 (21,887)
6 16,305 (21,887)
7 16,802 (21,887)
8 (4881)a (21,506)
9 7396 7541 (19,590)a (21,711)
10 15,821 19,746 (19,877)a (21,804)
11 15,813 (21,886)
12 15,524 (21,886)
13 (21,440)a (21,809)
14 11,664 17,031 (21,857)
15 (7544)a (13,583)a 15,751 (20,281)
16 18,840 (21,879)
17 (2288)a (4787)a (21887)
18 10,668 (16,838)
19 15,550 (21,887)
20 (1616)a 15,657 (21,620)

a Censoring due to a perfect PM.

Table 2
Optimal PM plans for various lengths of operation time under warranty.

W ŝ UB Ratio

104 5000.000 1.135 � 10�4 1.070088
105 6250.000 3.645 � 10�5 1.012358
106 6410.256 4.079 � 10�6 1.000204
107 6402.049 4.121 � 10�7 1.000399
108 6401.229 4.626 � 10�8 1.000000
1a 6400.000 4.600 � 10�5 1.000000

a denotes the optimal PM plan of Gilardoni and Colosimo (2007).
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@

@h
gðh;bÞ ¼ �

F1 h;b; s�m
� 	

F3 h;b; s�m
� 	 ; ð3:8Þ

@

@b
gðh;bÞ ¼ �

F2 h; b; s�m
� 	

F3 h; b; s�m
� 	 : ð3:9Þ

Even though the confidence interval for s�m may be short, the total
cost function C(s,m) could be very peaked around its minimum so
that a small deviation from the optimal PM schedule could have a
large impact on the expected total cost. Hence, the error bound
for C ŝ�m;m

� 	
� C s�m;m

� 	
could provide useful information to evalu-

ate the accuracy of ŝ�m. Since C0 s�m;m
� 	

¼ 0, by taking a second-order
approximation, we have

C ŝ�m;m
� 	

� C s�m;m
� 	

� C 0 s�m;m
� 	

ŝ�m � s�m
� 	

þ
C 00 s�m;m
� 	

2
ŝ�m � s�m
� 	2

¼ r2
ŝ�m

C 00 s�m;m
� 	

2
ŝ�m � s�m

rŝ�m

 !2

; ð3:10Þ

where C00ðs�m;mÞ ¼ d2C s�m;m
� 	

=d s�m
� 	2

> 0.
Since ŝ�m is asymptotically normally distributed with mean s�m

and variance r2
ŝ�m
; ŝ�m � s�m
� 	

=rŝ�m has a standard normal distribu-

tion approximately. Thus, the factor ŝ�m�s�m
rŝ�m

� �2

in Eq. (3.10) has a

v2 distribution with one degree of freedom asymptotically. The
upper bound of C ŝ�m;m

� 	
� C s�m;m

� 	
can be approximated by

C ŝ�m;m
� 	

� C s�m;m
� 	

6

r2
ŝ�m
2

C 00 s�m;m
� 	

v2
1�að1Þ ð3:11Þ

with a confidence level (1 � a), where v2
1�að1Þ denotes the (1 � a)

quantile of the v2 distribution with one degree of freedom and

C 00 s�m;m
� 	

¼ cMRbðb� 1Þ
hb

Xm

i¼1

s�m
� 	b�2 ab

i � bb
i

� �(

þðmrÞ2 W �mrs�m
� 	b�2 � ðmð1� rÞÞb s�m

� 	b�2

)
:

Because the C s�m;m
� 	

depends on the length of warranty time, W,
the average difference of C ŝ�m;m

� 	
and C s�m;m

� 	
per unit time is

used, instead. Hence, inequality (3.11) can be rewritten as

C ŝ�m;m
� 	

� C s�m;m
� 	� 	

=W 6

r2
ŝ�m

2W C00 s�m;m
� 	

v2
1�að1Þ. The 100(1 � a)%

upper bound for C ŝ�m;m
� 	

� C s�m;m
� 	� 	

=W , under the PLP, becomes

UB ¼ v2
1�að1Þ
2W

� � r2
ŝ�m

cMRbðb� 1Þ
hb

 ! Xm

i¼1

s�m
� 	b�2 ab

i � bb
i

� �(

þðmrÞ2 W �mrs�m
� 	b�2 � ðmð1� rÞÞb s�m

� 	b�2

)
: ð3:12Þ
4. An example

A data set regarding the power transformers which was re-
ported by Gilardoni & Colosimo (2007) is used for illustration.
The power transformers are basic components of an electrical
power-transmission system. They are complex and most of their
repairs involve the replacement of only a small fraction of their
constituent parts. Hence, it is reasonable to assume that the sys-
tem’s reliability after a transformer repair is essentially the same
as it was right before failure.

Table 1 shows the repair and failure records, in which 30 trans-
formers and 21 failure times were recorded between January 1999
and July 2001 for a group of 300-kV and 345-kV transformers
belonging to the electrical power company. Censoring due to the
implementation of a perfect PM is indicated by an asterisk(⁄) fol-
lowing the corresponding time in Table 1. Ten units censored at
the 21,888th hour without failures are not included in the table.
For more information about the data, please refer to Gilardoni &
Colosimo (2007).

This company was working under a restrictive policy concern-
ing nonscheduled maintenance. This policy makes the cost of an
MR performed after a failure to be 15 times of the cost from a
scheduled perfect PM. Under the PLP, the MLEs of the intensity
function parameters can be found as b̂ ¼ 1:988 and ĥ ¼ 24844.
Since the maintenance policy proposed by Gilardoni & Colosimo
(2007) was under the perfect PM of a given fixed cost, for the pur-
pose of comparison, the coefficients a = 1, c1 = 0, and c2 = 0 for the
PM cost are set accordingly. Therefore, the MR cost cMR = 15 is set
to be cMR/Cp(t,x) = 15. A PM plan with a perfect maintenance action,
which instantly returns the product to a like-new condition, results
in r = 1.

Using the proposed methodologies in Sections 2 and 3, the sta-
tistically estimated optimal PM schedules proposed here, ŝ’s, along
with the corresponding approximated 95% confidence upper
bounds, UB’s, for various finite warranties or finite lifetime periods
are obtained, respectively. And the results are presented in Table 2.
It can be seen that, as the warranty time or lifetime W increases,
the estimated optimal schedule ŝ decreases to 6400 which was
the perfect PM schedule suggested by Gilardoni & Colosimo
(2007) for W =1. It should be mentioned that the PM schedule
proposed by Gilardoni & Colosimo (2007) is not the optimal
maintenance schedule in terms of the expected total cost within
a finite time span of warranty. Table 2 also indicates that the



Table 3
Profermance of the proposed PM plans.

(c1,c2)

(0.0001,0.00015) (0.00015,0.0001) (0.0000,0.0000)

r b W s⁄ R1 s⁄ R1 s⁄ s�GC
a R2

0.7 1.3 15,000 6162.318 1.359 6205.678 1.361
20,000 8286.557 1.535 8339.767 1.536
30,000 12564.03 1.849 12635.00 1.851

1.6 15,000 6823.906 1.502 6846.983 1.504
20,000 6102.934 1.724 6146.200 1.732
30,000 9257.780 2.200 6984.714 2.213

1.9 15,000 7182.722 1.664 7199.367 1.666
20,000 6393.063 2.018 6423.013 2.028
30,000 7235.468 2.724 7273.115 2.744

0.9 1.3 15,000 6637.276 1.421 6647.940 1.422
20,000 8906.163 1.607 8919.225 1.608
30,000 8993.476 1.982 9051.666 1.987

1.6 15,000 7067.254 1.637 7073.010 1.638
20,000 6303.259 1.974 6326.360 1.981
30,000 7132.096 2.632 7166.830 2.650

1.9 15,000 4807.118 1.888 4823.712 1.898
20,000 6462.479 2.440 6479.552 2.452
30,000 5821.436 3.568 5848.976 3.614

1 1.3 15,000 7034.907 1.469 7034.907 1.469 7500.000 6681.809 1.052
20,000 6288.372 1.678 6317.929 1.682 6666.667 6681.809 1.000
30,000 7115.096 2.122 7164.542 2.133 6000.000 6681.809 1.009

1.6 15,000 4811.640 1.758 4826.222 1.764 5000.000 5321.399 1.003
20,000 6455.567 2.167 4847.171 2.177 5000.000 5321.399 1.004
30,000 5820.559 3.049 5849.288 3.085 5000.000 5321.399 1.007

1.9 15,000 4840.620 2.080 4852.897 2.089 5000.000 5298.297 1.004
20,000 4852.688 2.746 4871.147 2.773 5000.000 5298.297 1.005
30,000 5857.393 4.310 5879.974 4.373 5000.000 5298.297 1.008

a s�GC denotes the optimal value of s proposed by Gilardoni and Colosimo (2007).
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approximated upper bound for the average difference of the ex-
pected optimal total cost and its estimate per unit time is almost
negligible for all cases. Hence, the proposed statistic estimate of
the optimal PM schedule works properly, accordingly.

Let C(0,W](s) be the expected total cost which is the Equation (1)
of Gilardoni & Colosimo (2007), R = cMRE(N(0,W �ms)) and
H(s) = limW?1C(0,W](s)/W. The average expected total cost per unit
time can be represented as

C�ð0;W �ðsÞ ¼ HðsÞ þ R
W
¼ cMR

s
cPM

cMR
þ
Z s

0
kðtÞdt

� �
þ cMR

W

Z W�ms

0
kðtÞdt:

When W is very large and approaches infinity, the last term of
C�ð0;W�ðsÞ could be neglected. Using the first two terms of C�ð0;W�ðsÞ,
a perfect PM schedule had been obtained as 6400 by Gilardoni &
Colosimo (2007). Apparently, 6400 is not the minimizer of
C�ð0;W�ðsÞ when W is finite. Let s = 6400, the average expected total
cost per unit time from the PM policy of Gilardoni & Colosimo
(2007) within the time interval (0,W] is labeled by C�ð0;W�ð6400Þ.
The ratio of C�ð0;W�ð6400Þ over the average expected total cost per
unit time using the proposed schedule ŝ� is calculated. Table 2
shows the ratios for various lengths of warranty times. It can be
seen that all ratios are slightly larger than 1. This implies that the
proposed PM policy has a lower average expected total cost than
the one proposed by Gilardoni & Colosimo (2007) per unit time un-
der a perfect PM and c1 = c2 = 0. For example, when W = 10,000, the
ratio is 1.070088 which means the average expected total cost per
unit time by using the PM policy of Gilardoni & Colosimo (2007)
is around 7% over the average expected total cost of the proposed
PM policy for W = 10,000 when the conditions for the proposed
PM policy is reduced to the conditions given by Gilardoni & Colosi-
mo (2007). Accordingly, the difference of these two expected total
costs over the whole lifetime interval (0,10,000] could be very huge,
if the maintenance cost and the repair cost are very high.

When the perfect PM action is applied and the coefficients c1 > 0
and c2 = 0, the Eq. (2) of Gilardoni & Colosimo (2007) should be
added an extra constant term c1. Hence, the perfect PM schedule
of Gilardoni & Colosimo (2007) would not be changed. Hence,
the comparison will not be changed.

When the perfect PM action is applied and the coefficients c1 = 0
and c2 > 0, the Eq. (2) of Gilardoni & Colosimo (2007) should have
an extra non-constant term added, which is a function of c2 and the
number of PM actions within (0,W]. Therefore, the derivation for
setting the perfect PM schedule by using Eq. (2) of Gilardoni & Col-
osimo (2007) could not be accomplished via letting the derivative
equal to 0. In this situation, the perfect PM schedule must be stud-
ied through a different algorithm. At the present time, this perfect
PM schedule is not available for comparison.

5. The numerical study

In this section, the performances for the proposed PM policy are
investigated numerically under different maintenance parameter
settings. Assume that the lifetimes of repairable products have a
Weibull distribution with parameters b and h. The NHPP of the PLP
is used to model the number of failures during the whole lifetime
period. The median lifetime for the products can be represented as

tM ¼ hðlogð2ÞÞ1=b: ð5:1Þ
Assume that this product is manufactured with a nominal median
lifetime tm = 20,000. We are interested in studying the perfor-
mances of the proposed PM policy for this product under different
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warranty times, W = 15,000, 20,000, 30,000, and different intensi-
ties of failure models. In the study of the PLP, most estimates of b
are in the interval of (1,2). Therefore, we take b = 1.3, 1.5, 1.9 for
the numerical study. The value of h is able to be determined based
on the value of b and Eq. (5.1). Let the MR cost be 20 times of the PM
cost, the maintenance cost increase linearly with coefficients a = 20,
c1 = 0, 0.00010 or 0.00015, and c2 = 0, 0.00010 or 0.00015. The main-
tenance action can be an imperfect one with r = 0.7 or 0.9 or the
perfect one with r = 1. All numerical results are given in Table 3.

When an imperfect maintenance action is implemented, the PM
policy proposed by Gilardoni & Colosimo (2007) is improper to be
used. Therefore, the comparison between the proposed mainte-
nance schedule and the one by Gilardoni & Colosimo (2007) could
not be executed under the imperfect maintenance policy. Since our
proposed schedule is based on the global optimization criterion
which minimizes the expected total cost within the whole finite
operation time interval, no other PM policy would be used to com-
pare with the current proposed PM policy under the cost function
(2.3). However, the impact to the expected total cost from the input
parameters for the proposal PM policy could be evaluated numer-
ically. Here, the ratio between the expected total cost without a
maintenance action over the expected total cost with the proposed
PM policy under each different parameter setting is calculated and
denoted by R1 in Table 3. When the maintenance action is perfect
and the PM cost is constant which indicates the case of r = 1 and
c1 = c2 = 0, the ratio of the expected total cost from the PM schedule
proposed by Gilardoni & Colosimo (2007) over the expected total
cost from the proposed PM schedule under each different setting
of b and W could be evaluated and denoted by R2 in Table 3.

Table 3 shows that all R1s are significantly greater than 1. It
indicates that the expected total cost could be reduced signifi-
cantly whether the perfect PM or an imperfect PM is applied during
the finite warranty time period or the finite operation time inter-
val. For example, if r = 0.7, b = 1.3, W = 15000, the proposed policy
suggests only a PM action is conducted at time s⁄ = 6162.318 when
(c1,c2) = (0.00010,0.00015). The proportion of cost reduction rela-
tive to the cost without a maintenance action can be found as
0.359/1.359 = 26.4%. Moreover, the expected total cost of the pro-
posed PM policy is close to but slightly lower than the expected to-
tal cost of the PM policy proposed by Gilardoni & Colosimo (2007).
Table 2 also indicates that the proposed PM policy performs better
than the PM policy proposed by Gilardoni & Colosimo (2007). How-
ever, these two policies are getting close when W increases. This
behavior can be a validation of the proposed policy.

In this numerical study, the maintenance cost, Cp(t,x), increases
linearly with respect to the product operation time, t. That is, the
maintenance cost increases when the product operation time, t, in-
creases. This assumption is more realistic than keeping the mainte-
nance cost unchanged regardless of the usage time of the product.
The proposed PM model is flexible, and users can adjust the param-
eters of the maintenance policy according to a practical situation.

6. Conclusions

Given a finite operation time interval for repairable products, an
imperfect PM model has been established. A searching procedure is
provided to find the optimal PM schedule which minimizes the ex-
pected total cost over the operation time interval. It should be
mentioned again that the proposed optimal PM schedule is to min-
imize the expected total cost within a given finite operation time
period. An estimator of the proposed PM schedule is also devel-
oped. The application to the power transformers data shows that
the estimated optimal maintenance schedule performs well with
a small upper bound for the difference of the true expected total
cost and its estimate. Meanwhile the PM schedule provided by
Gilardoni & Colosimo (2007) originally for infinite operating time
interval could improperly estimate the perfect PM schedule when
the product operation time is finite.

With the advent of modern powerful and accessible computers
available, the computation times needed for the calculation of the
proposed PM schedule and for the calculation of the PM schedule
proposed by Gilardoni & Colosimo (2007) are negligible when the
total cost saving is considered. Moreover, the proposed process
to find the PM schedule can be applied to any imperfect PM action.
Considering a different failure process and different cost compo-
nents for the total cost function to develop a PM plan would be a
fruitful area of future research.
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